

Contents

	Overview
	Installation

	Documentation

	Development

	Installation

	Usage
	oemof.network

	API Reference
	oemof.network

	Contributing
	Bug reports

	Documentation improvements

	Feature requests and feedback

	Development

	Authors

	Changelog
	0.4.0.dev0 (2020-04-01)

	0.4.0 (2022-04-26)

Indices and tables

	Index

	Module Index

	Search Page

Overview

	docs

	[image: Documentation Status] [https://readthedocs.org/projects/oemof-network]

	tests

	
[image: tox-pytest] [https://github.com/oemof/oemof-network/actions?query=workflow%3A%22tox+checks%22] [image: tox-checks] [https://github.com/oemof/oemof-network/actions?query=workflow%3A%22tox+checks%22] [image: Coverage Status] [https://coveralls.io/r/oemof/oemof-network?branch=dev]

[image: Scrutinizer Status] [https://scrutinizer-ci.com/g/oemof/oemof-network/] [image: Codacy Code Quality Status] [https://www.codacy.com/gh/oemof/oemof-network?utm_source=github.com&utm_medium=referral&utm_content=oemof/oemof.network&utm_campaign=Badge_Grade] [image: CodeClimate Quality Status] [https://codeclimate.com/github/oemof/oemof-network]

	package

	
[image: PyPI Package latest release] [https://pypi.org/project/oemof.network] [image: PyPI Wheel] [https://pypi.org/project/oemof.network] [image: Supported versions] [https://pypi.org/project/oemof.network] [image: Supported implementations] [https://pypi.org/project/oemof-network]

[image: Commits since latest release] [https://github.com/oemof/oemof-network/compare/master...dev] [image: packaging] [https://github.com/oemof/oemof-network/actions?query=workflow%3Apackaging]

The network/graph submodules of oemof.

	Free software: MIT license

Installation

pip install oemof-network

You can also install the in-development version with:

pip install https://github.com/oemof/oemof-network/archive/dev.zip

Documentation

https://oemof-network.readthedocs.io/

Development

To run the all tests run:

tox

Note, to combine the coverage data from all the tox environments run:

	Windows

	set PYTEST_ADDOPTS=--cov-append
tox

	Other

	PYTEST_ADDOPTS=--cov-append tox

Installation

At the command line:

pip install oemof.network

Usage

oemof.network

The oemof.network library is part of the oemof installation. By now it can be used to define energy systems as a network with components and buses. Every component should be connected to one or more buses. After definition, a component has to explicitely be added to its energy system. Allowed components are sources, sinks and transformer.

[image: alternate text]The code of the example above:

from oemof.network import *
from oemof.energy_system import *

create the energy system
es = EnergySystem()

create bus 1
bus_1 = Bus(label="bus_1")

create bus 2
bus_2 = Bus(label="bus_2")

add bus 1 and bus 2 to energy system
es.add(bus_1, bus_2)

create and add sink 1 to energy system
es.add(Sink(label='sink_1', inputs={bus_1: []}))

create and add sink 2 to energy system
es.add(Sink(label='sink_2', inputs={bus_2: []}))

create and add source to energy system
es.add(Source(label='source', outputs={bus_1: []}))

create and add transformer to energy system
es.add(Transformer(label='transformer', inputs={bus_1: []}, outputs={bus_2: []}))

The network class is aimed to be very generic and might have some network analyse tools in the future. By now the network library is mainly used as the base for the solph library.

To use oemof.network in a project:

import oemof.network

oemof.network

The modeling of energy supply systems and its variety of components has a clearly structured approach within the oemof framework. Thus, energy supply systems with different levels of complexity can be based on equal basic module blocks. Those form an universal basic structure.

A node is either a bus or a component. A bus is always connected with one or several components. Likewise components are always connected with one or several buses. Based on their characteristics components are divided into several sub types.

Transformers have any number of inputs and outputs, e.g. a CHP takes from a bus of type ‘gas’ and feeds into a bus of type ‘electricity’ and a bus of type ‘heat’. With additional information like parameters and transfer functions input and output can be specified. Using the example of a gas turbine, the resource consumption (input) is related to the provided end energy (output) by means of an conversion factor. Components of type transformer can also be used to model transmission lines.

A sink has only an input but no output. With sink consumers like households can be modeled. But also for modelling excess energy you would use a sink.

A source has exactly one output but no input. Thus for example, wind energy and photovoltaic plants can be modeled.

Components and buses can be combined to an energy system. Components and buses are nodes, connected among each other through edges which are the inputs and outputs of the components. Such a model can be interpreted mathematically as bipartite graph as buses are solely connected to components and vice versa. Thereby the in- and outputs of the components are the directed edges of the graph. The components and buses themselves are the nodes of the graph.

oemof.network is part of oemofs core and contains the base classes that are used in oemof-solph. You do not need to define your energy system on the network level as all components can be found in oemof-solph, too. You may want to inherit from oemof.network components if you want to create new components.

Graph

In the graph module you will find a function to create a networkx graph from an energy system or solph model. The networkx package provides many features to analyse, draw and export graphs. See the networkx documentation [https://networkx.github.io/documentation/stable/] for more details. See the API-doc of graph for all details and an example. The graph module can be used with energy systems of solph as well.

API Reference

	oemof.network
	oemof.network.energy_system

	oemof.network.graph

	oemof.network.groupings

	oemof.network.network

oemof.network

oemof.network.energy_system

Basic EnergySystem class

This file is part of project oemof (github.com/oemof/oemof). It’s copyrighted
by the contributors recorded in the version control history of the file,
available from its original location oemof/oemof/energy_system.py

SPDX-FileCopyrightText: Stephan Günther <>
SPDX-FileCopyrightText: Uwe Krien <krien@uni-bremen.de>
SPDX-FileCopyrightText: Simon Hilpert <>
SPDX-FileCopyrightText: Cord Kaldemeyer <>

SPDX-License-Identifier: MIT

	
class oemof.network.energy_system.EnergySystem(**kwargs)

	Bases: object

Defining an energy supply system to use oemof’s solver libraries.

Note

The list of regions is not necessary to use the energy system with solph.

	Parameters

	
	entities (list of Entity, optional) – A list containing the already existing Entities that should be part of the energy system.
Stored in the entities attribute.
Defaults to [] if not supplied.

	timeindex (pandas.datetimeindex) – Defines the time range and, if equidistant, the timeindex for the
energy system

	timeincrement (numeric (sequence)) – Define the timeincrement for the energy system

	groupings (list) – The elements of this list are used to construct Groupings or they are used directly if they
are instances of Grouping.
These groupings are then used to aggregate the entities added to this
energy system into groups.
By default, there’ll always be one group for each uid containing exactly the entity with the
given uid.
See the examples for more information.

	Variables

	
	entities (list of Entity) – A list containing the Entities
that comprise the energy system. If this EnergySystem is
set as the registry
attribute, which is done automatically on EnergySystem
construction, newly created Entities are automatically added to this list on
construction.

	groups (dict) –

	results (dictionary) – A dictionary holding the results produced by the energy system.
Is None while no results are produced.
Currently only set after a call to optimize() after which it
holds the return value of om.results().
See the documentation of that method for a detailed description of the
structure of the results dictionary.

	timeindex (pandas.index, optional) – Define the time range and increment for the energy system. This is an
optional attribute but might be import for other functions/methods that
use the EnergySystem class as an input parameter.

Examples

Regardles of additional groupings, entities will always be grouped by their uid:

>>> from oemof.network.network import Bus, Sink
>>> es = EnergySystem()
>>> bus = Bus(label='electricity')
>>> es.add(bus)
>>> bus is es.groups['electricity']
True
>>> es.dump()
'Attributes dumped to:...
>>> es = EnergySystem()
>>> es.restore()
'Attributes restored from:...
>>> bus is es.groups['electricity']
False
>>> es.groups['electricity']
"<oemof.network.network.Bus: 'electricity'>"

For simple user defined groupings, you can just supply a function that
computes a key from an entity and the
resulting groups will be sets of entities stored under the returned keys, like in this
example, where entities are grouped by
their type:

>>> es = EnergySystem(groupings=[type])
>>> buses = set(Bus(label="Bus {}".format(i)) for i in range(9))
>>> es.add(*buses)
>>> components = set(Sink(label="Component {}".format(i))
... for i in range(9))
>>> es.add(*components)
>>> buses == es.groups[Bus]
True
>>> components == es.groups[Sink]
True

	
add(*nodes)

	Add nodes to this energy system.

	
dump(dpath=None, filename=None)

	Dump an EnergySystem instance.

	
flows()

	

	
property groups

	

	
property nodes

	

	
restore(dpath=None, filename=None)

	Restore an EnergySystem instance.

	
signals = {<function EnergySystem.add>: <blinker.base.NamedSignal object at 0x7f1c5a82b490; <function EnergySystem.add>>}

	A dictionary of blinker [https://pythonhosted.org/blinker/] signals emitted by energy systems.

Currently only one signal is supported. This signal is emitted whenever a
Node <oemof.network.Node> is add`ed to an energy system. The signal’s
`sender is set to the node <oemof.network.Node> that got added to the
energy system so that nodes <oemof.network.Node> have an easy way to only
receive signals for when they themselves get added to an energy system.

oemof.network.graph

Modules for creating and analysing energy system graphs.

This file is part of project oemof (github.com/oemof/oemof). It’s copyrighted
by the contributors recorded in the version control history of the file,
available from its original location oemof/oemof/graph.py

SPDX-FileCopyrightText: Simon Hilpert <>
SPDX-FileCopyrightText: Uwe Krien <krien@uni-bremen.de>

SPDX-License-Identifier: MIT

	
oemof.network.graph.create_nx_graph(energy_system=None, remove_nodes=None, filename=None, remove_nodes_with_substrings=None, remove_edges=None)

	Create a networkx.DiGraph for the passed energy system and plot it.
See http://networkx.readthedocs.io/en/latest/ for more information.

	Parameters

	
	energy_system (oemof.solph.network.EnergySystem)

	filename (str) – Absolute filename (with path) to write your graph in the graphml
format. If no filename is given no file will be written.

	remove_nodes (list of strings) – Nodes to be removed e.g. [‘node1’, node2’)]

	remove_nodes_with_substrings (list of strings) – Nodes that contain substrings to be removed e.g. [‘elec’, ‘heat’)]

	remove_edges (list of string tuples) – Edges to be removed e.g. [(‘resource_gas’, ‘gas_balance’)]

Examples

>>> import os
>>> import pandas as pd
>>> from oemof.network.network import Bus, Sink, Transformer
>>> from oemof.network.energy_system import EnergySystem
>>> import oemof.network.graph as grph
>>> datetimeindex = pd.date_range('1/1/2017', periods=3, freq='H')
>>> es = EnergySystem(timeindex=datetimeindex)
>>> b_gas = Bus(label='b_gas', balanced=False)
>>> bel1 = Bus(label='bel1')
>>> bel2 = Bus(label='bel2')
>>> demand_el = Sink(label='demand_el', inputs = [bel1])
>>> pp_gas = Transformer(label=('pp', 'gas'),
... inputs=[b_gas],
... outputs=[bel1],
... conversion_factors={bel1: 0.5})
>>> line_to2 = Transformer(label='line_to2', inputs=[bel1], outputs=[bel2])
>>> line_from2 = Transformer(label='line_from2',
... inputs=[bel2], outputs=[bel1])
>>> es.add(b_gas, bel1, demand_el, pp_gas, bel2, line_to2, line_from2)
>>> my_graph = grph.create_nx_graph(es)
>>> # export graph as .graphml for programs like Yed where it can be
>>> # sorted and customized. this is especially helpful for large graphs
>>> # grph.create_nx_graph(es, filename="my_graph.graphml")
>>> [my_graph.has_node(n)
... for n in ['b_gas', 'bel1', "('pp', 'gas')", 'demand_el', 'tester']]
[True, True, True, True, False]
>>> list(nx.attracting_components(my_graph))
[{'demand_el'}]
>>> sorted(list(nx.strongly_connected_components(my_graph))[1])
['bel1', 'bel2', 'line_from2', 'line_to2']
>>> new_graph = grph.create_nx_graph(energy_system=es,
... remove_nodes_with_substrings=['b_'],
... remove_nodes=["('pp', 'gas')"],
... remove_edges=[('bel2', 'line_from2')],
... filename='test_graph')
>>> [new_graph.has_node(n)
... for n in ['b_gas', 'bel1', "('pp', 'gas')", 'demand_el', 'tester']]
[False, True, False, True, False]
>>> my_graph.has_edge("('pp', 'gas')", 'bel1')
True
>>> new_graph.has_edge('bel2', 'line_from2')
False
>>> os.remove('test_graph.graphml')

Notes

Needs graphviz and networkx (>= v.1.11) to work properly.
Tested on Ubuntu 16.04 x64 and solydxk (debian 9).

oemof.network.groupings

All you need to create groups of stuff in your energy system.

This file is part of project oemof (github.com/oemof/oemof). It’s copyrighted
by the contributors recorded in the version control history of the file,
available from its original location oemof/oemof/groupings.py

SPDX-FileCopyrightText: Stephan Günther <>
SPDX-FileCopyrightText: Uwe Krien <krien@uni-bremen.de>

SPDX-License-Identifier: MIT

	
oemof.network.groupings.DEFAULT = <oemof.network.groupings.Grouping object>

	The default Grouping.

This one is always present in an energy system. It stores every entity under its uid and raises an error if another entity with the same uid get’s added to the energy system.

	
class oemof.network.groupings.Flows(key=None, constant_key=None, filter=None, **kwargs)

	Bases: oemof.network.groupings.Nodes

Specialises Grouping to group the flows connected to nodes into sets.
Note that this specifically means that the key, and
value functions act on a set of flows.

	
value(flows)

	Returns a set containing only flows, so groups are
sets of flows.

	
class oemof.network.groupings.FlowsWithNodes(key=None, constant_key=None, filter=None, **kwargs)

	Bases: oemof.network.groupings.Nodes

Specialises Grouping to act on the flows connected to
nodes and create sets of
(source, target, flow) tuples.
Note that this specifically means that the key, and
value functions act on sets like these.

	
value(tuples)

	Returns a set containing only tuples, so groups are
sets of tuples.

	
class oemof.network.groupings.Grouping(key=None, constant_key=None, filter=None, **kwargs)

	Bases: object

Used to aggregate entities in an
energy system into
groups.

The way Groupings work is that each Grouping
g of an energy system is called whenever an entity is added to the energy system (and for each
entity already present, if the energy
system is created with existing enties).
The call g(e, groups), where e is an entity and groups is a dictionary mapping
group keys to groups, then uses the three functions key, value and merge in the following way:

	key(e) is called to obtain a key k
under which the group should be stored,

	value(e) is called to obtain a value
v (the actual group) to store under k,

	if you supplied a filter() argument, v is
filtered using that function,

	otherwise, if there is not yet anything stored under
groups[k], groups[k] is set to v. Otherwise
merge is used to figure out how to merge
v into the old value of groups[k], i.e.
groups[k] is set to merge(v, groups[k]).

Instead of trying to use this class directly, have a look at its
subclasses, like Nodes, which should cater for most use cases.

Notes

When overriding methods using any of the constructor parameters, you don’t
have access to self in the corresponding function. If you need
access to self, subclass Grouping and override the methods
in the subclass.

A Grouping may be called more than once on the same object
e, so one should make sure that user defined Grouping
g is idempotent, i.e. g(e, g(e, d)) == g(e, d).

	Parameters

	
	key (callable or hashable) – Specifies (if not callable) or extracts (if callable) a key for each entity of
the energy system.

	constant_key (hashable (optional)) – Specifies a constant key. Keys specified using
this parameter are not called but taken as is.

	value (callable, optional) – Overrides the default behaviour of value.

	filter (callable, optional) – If supplied, whatever is returned by value() is filtered through this. Mostly useful in conjunction with
static (i.e. non-callable) keys.
See filter() for more details.

	merge (callable, optional) – Overrides the default behaviour of merge.

	
filter(group)

	Filter the group returned by value()
before storing it.

Should return a boolean value. If the group returned by
value() is iterable, this
function is used (via Python’s builtin filter) to select the values which should be retained in
group. If group is not iterable, it is simply called on group itself
and the return value decides whether group is stored
(True) or not (False).

	
key(node)

	Obtain a key under which to store the group.

You have to supply this method yourself using the key parameter
when creating Grouping instances.

Called for every node of the energy
system. Expected to return the key (i.e. a valid hashable)
under which the group value(node) will be
stored. If it should be added to more than one group, return a
list (or any other non-hashable,
iterable) containing the group keys.

Return None if you don’t want to store e in a group.

	
merge(new, old)

	Merge a known old group with a new one.

This method is called if there is already a value stored under
group[key(e)]. In that case, merge(value(e),
group[key(e)]) is called and should return the new
group to store under key(e).

The default behaviour is to raise an error if new and old
are not identical.

	
value(e)

	Generate the group obtained from e.

This methd returns the actual group obtained from e. Like
key, it is called for every e in the
energy system. If there is no group stored under key(e), groups[key(e)] is set to value(e). Otherwise merge(value(e), groups[key(e)]) is called.

The default returns the entity
itself.

	
class oemof.network.groupings.Nodes(key=None, constant_key=None, filter=None, **kwargs)

	Bases: oemof.network.groupings.Grouping

Specialises Grouping to group nodes
into sets.

	
merge(new, old)

	Updates old to be the union of old
and new.

	
value(e)

	Returns a set containing only e, so groups are
sets of node.

oemof.network.network

This package (along with its subpackages) contains the classes used to model
energy systems. An energy system is modelled as a graph/network of entities
with very specific constraints on which types of entities are allowed to be
connected.

This file is part of project oemof (github.com/oemof/oemof). It’s copyrighted
by the contributors recorded in the version control history of the file,
available from its original location oemof/oemof/network.py

SPDX-FileCopyrightText: Stephan Günther <>
SPDX-FileCopyrightText: Uwe Krien <krien@uni-bremen.de>
SPDX-FileCopyrightText: Simon Hilpert <>
SPDX-FileCopyrightText: Cord Kaldemeyer <>
SPDX-FileCopyrightText: Patrik Schönfeldt <patrik.schoenfeldt@dlr.de>

SPDX-License-Identifier: MIT

	
class oemof.network.network.Bus(*args, **kwargs)

	Bases: oemof.network.network.Node

	
class oemof.network.network.Component(*args, **kwargs)

	Bases: oemof.network.network.Node

	
class oemof.network.network.Edge(input=None, output=None, flow=None, values=None, **kwargs)

	Bases: oemof.network.network.Node

Bus`es/:class:`Component`s are always connected by an
:class:`Edge.

Edge`s connect a single non-:class:`Edge Node with another. They
are directed and have a (sequence of) value(s) attached to them so they can
be used to represent a flow from a source/an input to a target/an output.

	Parameters

	
	input, output (Bus or Component, optional)

	flow, values (object, optional) – The (list of) object(s) representing the values flowing from this
edge’s input into its output. Note that these two names are aliases of
each other, so flow and values are mutually exclusive.

	Note that all of these parameters are also set as attributes with the same

	name.

	
Label

	alias of oemof.network.network.EdgeLabel

	
property flow

	

	
classmethod from_object(o)

	Creates an Edge instance from a single object.

This method inspects its argument and does something different
depending on various cases:

	If o is an instance of Edge, o is returned unchanged.

	If o is a Mapping, the instance is created by calling
cls(**o),

	In all other cases, o will be used as the values keyword
argument to `Edge`s constructor.

	
property input

	

	
property output

	

	
class oemof.network.network.EdgeLabel(input, output)

	Bases: tuple

	
property input

	Alias for field number 0

	
property output

	Alias for field number 1

	
class oemof.network.network.Inputs(target)

	Bases: collections.abc.MutableMapping

A special helper to map n1.inputs[n2] to n2.outputs[n1].

	
class oemof.network.network.Metaclass

	Bases: type

The metaclass for objects in an oemof energy system.

	
property registry

	

	
class oemof.network.network.Node(*args, **kwargs)

	Bases: object

Represents a Node in an energy system graph.

Abstract superclass of the two general types of nodes of an energy system
graph, collecting attributes and operations common to all types of nodes.
Users should neither instantiate nor subclass this, but use
Component, Bus, Edge or one of their subclasses
instead.

	Parameters

	
	label (hashable, optional) – Used as the string representation of this node. If this parameter is
not an instance of str it will be converted to a string and
the result will be used as this node’s label, which should be
unique with respect to the other nodes in the energy system graph this
node belongs to. If this parameter is not supplied, the string
representation of this node will instead be generated based on this
nodes class and id.

	inputs (list or dict, optional) – Either a list of this nodes’ input nodes or a dictionary mapping input
nodes to corresponding inflows (i.e. input values).

	outputs (list or dict, optional) – Either a list of this nodes’ output nodes or a dictionary mapping
output nodes to corresponding outflows (i.e. output values).

	Variables

	__slots__ (str or iterable of str) – See the Python documentation on __slots__ [https://docs.python.org/3/reference/datamodel.html#slots] for more
information.

	
property inputs

	dict:
Dictionary mapping input Nodes n to
Edge`s from :obj:`n into self.
If self is an Edge, returns a dict containing the
Edge’s single input node as the key and the flow as the value.

	
property label

	If this node was given a label on construction, this
attribute holds the actual object passed as a parameter. Otherwise
:py:`node.label` is a synonym for :py:`str(node)`.

	
property outputs

	dict:
Dictionary mapping output Nodes n to
Edges from self into n.
If self is an Edge, returns a dict containing the
Edge’s single output node as the key and the flow as the
value.

	
register()

	

	
registry_warning = FutureWarning('\nAutomatic registration of `Node`s is deprecated in favour of\nexplicitly adding `Node`s to an `EnergySystem` via `EnergySystem.add`.\nThis feature, i.e. the `Node.registry` attribute and functionality\npertaining to it, will be removed in future versions.\n')

	

	
class oemof.network.network.Outputs(source)

	Bases: collections.UserDict

Helper that intercepts modifications to update Inputs symmetrically.

	
class oemof.network.network.Sink(*args, **kwargs)

	Bases: oemof.network.network.Component

	
class oemof.network.network.Source(*args, **kwargs)

	Bases: oemof.network.network.Component

	
class oemof.network.network.Transformer(*args, **kwargs)

	Bases: oemof.network.network.Component

	
oemof.network.network.registry_changed_to(r)

	Override registry during execution of a block and restore it afterwards.

	
oemof.network.network.temporarily_modifies_registry(f)

	Decorator that disables Node registration during f’s execution.

It does so by setting Node.registry to None while f is executing, so
f can freely set Node.registry to something else. The registration’s
original value is restored afterwards.

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

Bug reports

When reporting a bug [https://github.com/oemof/oemof.network/issues] please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Documentation improvements

oemof.network could always use more documentation, whether as part of the
official oemof.network docs, in docstrings, or even on the web in blog posts,
articles, and such.

Feature requests and feedback

The best way to send feedback is to file an issue at https://github.com/oemof/oemof.network/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that code contributions are welcome :)

Development

To set up oemof.network for local development:

	Fork oemof.network [https://github.com/oemof/oemof.network]
(look for the “Fork” button).

	Clone your fork locally:

git clone git@github.com:oemof/oemof.network.git

	Create a branch for local development:

git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes run all the checks and docs builder with tox [https://tox.readthedocs.io/en/latest/install.html] one command:

tox

	Commit your changes and push your branch to GitHub:

git add .
git commit -m "Your detailed description of your changes."
git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

If you need some code review or feedback while you’re developing the code just make the pull request.

For merging, you should:

	Include passing tests (run tox) 1.

	Update documentation when there’s new API, functionality etc.

	Add a note to CHANGELOG.rst about the changes.

	Add yourself to AUTHORS.rst.

	1

	If you don’t have all the necessary python versions available locally you can rely on Travis - it will
run the tests [https://travis-ci.org/oemof/oemof.network/pull_requests] for each change you add in the pull request.

It will be slower though …

Tips

To run a subset of tests:

tox -e envname -- pytest -k test_myfeature

To run all the test environments in parallel (you need to pip install detox):

detox

Authors

(alphabetic order)

	Cord Kaldemeyer

	Patrik Schönfeldt

	Simon Hilpert

	Stephan Günther

	Uwe Krien

Changelog

0.4.0.dev0 (2020-04-01)

	First release on PyPI.

0.4.0 (2022-04-26)

	Improved imports

	Improved testing

	Explicitly defined API

 Python Module Index

 o

 		 	

 		
 o	

 	[image: -]
 	
 oemof	

 	
 	
 oemof.network.energy_system	

 	
 	
 oemof.network.graph	

 	
 	
 oemof.network.groupings	

 	
 	
 oemof.network.network	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | K
 | L
 | M
 | N
 | O
 | R
 | S
 | T
 | V

A

 	
 	add() (oemof.network.energy_system.EnergySystem method)

B

 	
 	Bus (class in oemof.network.network)

C

 	
 	Component (class in oemof.network.network)

 	
 	create_nx_graph() (in module oemof.network.graph)

D

 	
 	DEFAULT (in module oemof.network.groupings)

 	
 	dump() (oemof.network.energy_system.EnergySystem method)

E

 	
 	Edge (class in oemof.network.network)

 	
 	EdgeLabel (class in oemof.network.network)

 	EnergySystem (class in oemof.network.energy_system)

F

 	
 	filter() (oemof.network.groupings.Grouping method)

 	flow (oemof.network.network.Edge property)

 	Flows (class in oemof.network.groupings)

 	
 	flows() (oemof.network.energy_system.EnergySystem method)

 	FlowsWithNodes (class in oemof.network.groupings)

 	from_object() (oemof.network.network.Edge class method)

G

 	
 	Grouping (class in oemof.network.groupings)

 	
 	groups (oemof.network.energy_system.EnergySystem property)

I

 	
 	input (oemof.network.network.Edge property)

 	(oemof.network.network.EdgeLabel property)

 	
 	Inputs (class in oemof.network.network)

 	inputs (oemof.network.network.Node property)

K

 	
 	key() (oemof.network.groupings.Grouping method)

L

 	
 	Label (oemof.network.network.Edge attribute)

 	
 	label (oemof.network.network.Node property)

M

 	
 	merge() (oemof.network.groupings.Grouping method)

 	(oemof.network.groupings.Nodes method)

 	Metaclass (class in oemof.network.network)

 	
 module

 	oemof.network.energy_system

 	oemof.network.graph

 	oemof.network.groupings

 	oemof.network.network

N

 	
 	Node (class in oemof.network.network)

 	
 	Nodes (class in oemof.network.groupings)

 	nodes (oemof.network.energy_system.EnergySystem property)

O

 	
 	
 oemof.network.energy_system

 	module

 	
 oemof.network.graph

 	module

 	
 oemof.network.groupings

 	module

 	
 	
 oemof.network.network

 	module

 	output (oemof.network.network.Edge property)

 	(oemof.network.network.EdgeLabel property)

 	Outputs (class in oemof.network.network)

 	outputs (oemof.network.network.Node property)

R

 	
 	register() (oemof.network.network.Node method)

 	registry (oemof.network.network.Metaclass property)

 	
 	registry_changed_to() (in module oemof.network.network)

 	registry_warning (oemof.network.network.Node attribute)

 	restore() (oemof.network.energy_system.EnergySystem method)

S

 	
 	signals (oemof.network.energy_system.EnergySystem attribute)

 	
 	Sink (class in oemof.network.network)

 	Source (class in oemof.network.network)

T

 	
 	temporarily_modifies_registry() (in module oemof.network.network)

 	
 	Transformer (class in oemof.network.network)

V

 	
 	value() (oemof.network.groupings.Flows method)

 	(oemof.network.groupings.FlowsWithNodes method)

 	(oemof.network.groupings.Grouping method)

 	(oemof.network.groupings.Nodes method)

 nav.xhtml

 Table of Contents

 		
 Contents

 		
 Overview

 		
 Installation

 		
 Documentation

 		
 Development

 		
 Installation

 		
 Usage

 		
 oemof.network

 		
 oemof.network

 		
 API Reference

 		
 oemof.network

 		
 oemof.network.energy_system

 		
 oemof.network.graph

 		
 oemof.network.groupings

 		
 oemof.network.network

 		
 Contributing

 		
 Bug reports

 		
 Documentation improvements

 		
 Feature requests and feedback

 		
 Development

 		
 Pull Request Guidelines

 		
 Tips

 		
 Authors

 		
 Changelog

 		
 0.4.0.dev0 (2020-04-01)

 		
 0.4.0 (2022-04-26)

_static/minus.png

_static/plus.png

_static/file.png

